Answer:
Option D
Explanation:
MI of a solid cylinder about its perpendicular bisector of length is
I=m(l212+R24)
⇒I=mR24+ml212=m24πρl+ml212
[ ∴ρπR2l=m ]
For l to be maximum,
dIdl=−m24πρ(1l2)+ml6=0
⇒m24πρ=ml36=0
Now, putting m=ρπR2l
∴l3=32πρ.ρπR2l
l2R2=32
lR=√32