<<12345>>
6.

Consider the hyperbola H: x2-y2=1 and a circle S with centre N(x2,0). Suppose that H and S touch each other at a point P(x1,y1) with x1>1 and y1>0. The common tangent to H and  S at P intersects the X-axis  at point M.  If  (l,m) is the centroid of $\triangle PMN$, then the correct expression(s) is/are


A) $\frac{dl}{dx_{1}}=1-\frac{1}{3x_1^2}$ for $x_{1}>0$

B) $\frac{dm}{dx_{1}}=\frac{x_{1}}{3(\sqrt{x_1^2-1}}$ for $x_{1}>0$

C) $\frac{dl}{dx_{1}}=1+\frac{1}{3x_1^2}$ for $x_{1}>0$

D) $\frac{dm}{dy_{1}}=\frac{1}{3}$ for $y_{1}>0$



7.

 Let E1  and E2  be two ellipse whose centres are at the origin. The major axes of E1 and E2 lie along the lie X-axis and Y-axis, respectively. Let S be the circle   $x^{2}+(y-1)^{2}=2$ . The straight-line x+y=3 touches the curve S. E1 and E2 at P,Q and R, respectively. Suppose that  PQ=PR= $\frac{2\sqrt{2}}{3}$. If e1 and e2 are eccentricities  of E1 and E2 respectively, then the correct expression(s) is/are


A) $e_1^2+e_2^2=\frac{43}{40}$

B) $e_{1}.e_{2}=\frac{\sqrt{7}}{2\sqrt{10}}$

C) $|e_1^2-e_2^2|=\frac{5}{8}$

D) $e_{1}.e_{2}=\frac{\sqrt{3}}{4}$



8.

 If   $\alpha=3$   $\sin^{-1}\left(\frac{6}{11}\right)$   and    $\beta=3\cos^{-1}\left(\frac{4}{9}\right)$  , where the inverse trigonometric  functions take only the principal values, then the correct option (s) is /are


A) $\cos\beta>0$

B) $\sin\beta<0$

C) $\cos(\alpha+\beta)>0$

D) $\cos\alpha<0$



9.

Let S be the set if all non-zero real numbers  $\alpha$ such that the quadratic equation $ \alpha x^{2}-x+\alpha=0$ has two distinct real roots  x1  and x2 satisfying the inequality |x1-x2|<1. Which of the following interval(s) is /are a subset of S?


A) $(-\frac{1}{2},\frac{1}{\sqrt{5}})$

B) $(-\frac{1}{\sqrt{5}},0)$

C) $(0,\frac{1}{\sqrt{5}})$

D) $(\frac{1}{\sqrt{5}},\frac{1}{2})$



10.

Let  $f'(x)=\frac{192x^{3}}{2+\sin^{4}\pi x}$ for all x ε R with  $f(\frac{1}{2})=0$   If   $m\leq\int_{1/2}^{1} f(x) dx\leq M,$ , then the possible values of m and M are

 


A) m=13,N=24

B) $m=\frac{1}{4},M=\frac{1}{2}$

C) m=-11,M=0

D) m=1,M=12



<<12345>>