Answer:
Option A,B,D
Explanation:
Equation of family of circles touching hyperbola at (x1,y1) is
(x-x1)2+(y-y1)2+λ(x x1-y y1-1)=0
Now, its centre is (x2,0).
$\therefore$ $\left[\frac{-(\lambda x_{1}-2x_{1)}}{2},-\frac{(-2y_{1}-\lambda y_{1})}{2}\right]=(x_{2},0)$
$\Rightarrow $ $2y_{1}+\lambda y_{1}=0\Rightarrow\lambda=-2$
and $2x_{1}-\lambda x_{1}=2x_{2}\Rightarrow x_{2}=2x_{1}$
$\therefore $ $P(x_{1},\sqrt{x_1^2-1)}$
And $ N(x_{2},0)=(2x_{1},0)$
As tangent intersect X-axis at $M(\frac{1}{x},0)$
Centroid of $\triangle PMN=(l,m)$
$\Rightarrow$ $\left(\frac{3x_{1}-\frac{1}{x_{1}}}{3},\frac{y_{1}+0+0}{3}\right)=(l,m)$
$\Rightarrow l= \frac{3x_{1}+\frac{1}{x_{1}}}{3} $
On differentiating w.r.t x1, we get
$\frac{dl}{dx_{1}}=\frac{3-\frac{1}{x_1^2}}{3}$
$\Rightarrow$ $\frac{dl}{dx_{1}}=1-\frac{1}{3x_1^2},$ for $x_{1}>1$
and $m=\frac{\sqrt{x_1^2-1}}{3}$
On differentiating w.r.t x1 , we get
$\frac{dm}{dx_{1}}=\frac{2x_{1}}{2\times 3\sqrt{x_1^2-1}}=\frac{x_{1}}{ 3\sqrt{x_1^2-1}}$, for $x_{1}>1 $
also $m=\frac{y_{1}}{3}$
On differentiating w.r.t y1, we get
$\frac{dm}{dy_{1}}=\frac{1}{3},$ for $y_{1}>0 $