Answer:
Option B
Explanation:
(b)
Here, f′(x)=192x32+sin4πx
∴ 192x33≤f′(x)≤192x32
On integrating between the limits 12 to x, we get
∫x1/2192x33dx≤∫x1/2f′(x)dx≤∫x1/2192x32dx
⇒19212(x4−116)≤f(x)−f(0) ≤24x4−32
⇒16x4−1≤f(x)≤24x4−32
Again integrating between the limits 12 to 1, we get
∫11/2(16x4−1)dx≤∫11/2f(x)dx≤∫11/2(24x4−32)dx
⇒ [16x55−x]11/2≤∫11/2f(x)dx
≤[24x55−32x]11/2
⇒ (112+25)≤∫11/2f(x)dx≤(3310+610)
⇒ 2.6≤∫11/2f(x)dx≤3.9