Answer:
Option A,C,D
Explanation:
Here, $\alpha=3\sin^{-}\left(\frac{6}{11}\right)$
and $\beta=3\cos^{-1}\left(\frac{4}{9}\right)4$ as $\frac{6}{11}>\frac{1}{2}$
$\Rightarrow $ $ \sin^{-1} \left(\frac{6}{11}\right)>\sin^{-1}\left(\frac{1}{2}\right)=\frac{\pi}{6}$
$\therefore$ $\alpha=3 \sin^{-1} \left(\frac{6}{11}\right)>\frac{\pi}{2}\Rightarrow\cos\alpha<0$
Now, $\beta=3\cos^{-1}\left(\frac{4}{9}\right)$
As $\frac{4}{9}<\frac{1}{2}\Rightarrow\cos^{-1}\left(\frac{4}{9}\right)>\cos^{-1}\left(\frac{1}{2}\right)=\frac{\pi}{3}$
$\therefore$ $\beta=3\cos^{-1}\left(\frac{4}{9}\right)>\pi$
$\therefore$ $\cos\beta<0$ and $\sin\beta<0$
Now, $\alpha+\beta$ is slightly greater than $\frac{3\pi}{2}$
$\therefore$ $\cos(\alpha+\beta)>0$