Answer:
Option A,B,C
Explanation:
Given , x1 and x2 are roots of $\alpha x^{2}-x+\alpha=0$
$\therefore$ $x_{1}+x_{2}=\frac{1}{\alpha}$ and $x_{1}x_{2}=1$
Also, $|x_{1}-x_{2}|<1$
$\Rightarrow$ $|x_{1}-x_{2}|^{2}<1\Rightarrow(x_{1}-x_{2})^{2}<1$
or $(x_{1}-x_{2})^{2}-4x_{1}x_{2}<1$
$\Rightarrow$ $\frac{1}{\alpha^{2}}-4<1$ or $\frac{1}{\alpha^{2}}<5$
$\Rightarrow$ $5\alpha^{2}-1>0$
or $(\sqrt{5}\alpha-1)(\sqrt{5}\alpha+1)>0$
$\therefore$ $\alpha \epsilon \left(-\infty, -\frac{1}{\sqrt{5}}\right)\cup\left(\frac{1}{\sqrt{5}},\infty\right)$ ......(i)
Also, D>0
$\Rightarrow$ $1-4\alpha^{2}>0$ or $\alpha \epsilon \left(-\frac{1}{2},\frac{1}{2}\right)$ .....(ii)
From Eqs. (i) and (ii) , we get
$\alpha \epsilon \left(-\frac{1}{2}, -\frac{1}{\sqrt{5}}\right)\cup\left(\frac{1}{\sqrt{5}},\frac{1}{2}\right)$