Answer:
Option B
Explanation:
It is based on lens makers formula and its magnification
i.e, $\frac{1}{f}=(\mu-1)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)$
According to lens Maker's formula,when the lens in the air.
$\frac{1}{f}=\left( \frac{3}{2}-1\right)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)$
$\frac{1}{f}=\frac{1}{2x}$
$\Rightarrow$ $ f=2x$
$\left(\frac{1}{x}=\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)$
In case of liquid , where refractive index is $\frac{4}{3}$ and $\frac{5}{3}$, we get
focal length in first liquid
$\frac{1}{f_{1}}=\left(\frac{\mu_{s}}{\mu_{l1}}-1\right)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)$
$\Rightarrow$ $\frac{1}{f_{1}}=\left(\frac{\frac{3}{2}}{\frac{4}{3}}-1\right)\frac{1}{x}$
$\Rightarrow$ f1 is positive
$\frac{1}{f_{1}}=\frac{1}{8x}=\frac{1}{4(2x)}=\frac{1}{4f}$
$\Rightarrow$ f1=4f
focal length in second liquid
$\frac{1}{f_{2}}=\left(\frac{\mu_{s}}{\mu_{l1}}-1\right)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)$
$\Rightarrow$ $\frac{1}{f_{2}}=\left(\frac{\frac{3}{2}}{\frac{5}{3}}-1\right)\frac{1}{x}$
$\Rightarrow$ f2 is negative