Answer:
Option B
Explanation:
The problem is based on frequency dependence of photoelectric emission. When incident light with certain frequency (greater than on the threshold frequency is focused on a metal surface) then some electrons are emitted from the metal with substantial initial speed.
When an electron moves in a circular path, then
$r=\frac{mv}{eB}$
$\Rightarrow $ $\frac{r^{2}e^{2}B^{2}}{2}=\frac{m^{2}v^{2}}{2}$
$KE_{max}=\frac{(mv)^{2}}{2m}$
$\Rightarrow$ $\frac{r^{2}e^{2}B^{2}}{2m}=KE_{max}$
Work function of the metal(W)
i.e, $W=hv=KE_{max}$
$1.89-\phi= \frac{r^{2}e^{2}B^{2}}{2m}\frac{1}{2}eV$
$= \frac{r^{2}e^{}B^{2}}{2m}eV$
[hv→1.89 eV, for the transition on from third to second orbit of H-atom]
= $\frac{100\times10^{-6}\times1.6\times 10^{-19}\times9\times 10^{-8}}{2\times9.1\times10^{-31}}$
$\phi=1.89-\frac{1.6\times9}{2\times9.1}$
=1.89-0.79=1.1 eV