1)

A thin convex lens made from crown glass (μ =3/2) has focal length f. When it is measured in two different liquids having refractive index 4/3 and 5/3. It has the focal length f1  and f2 respectively. The correct relation between  the focal length is 


A) $f_{1}=f_{2}< f$

B) $f_{1}> f$ and $f_{2}$ becomes negative

C) $f_{2}> f$ and $f_{1}$ becomes negative

D) $ f_{2} and f_{1}$ both becomes negative

Answer:

Option B

Explanation:

It is based on lens makers formula and its magnification

 i.e,   $\frac{1}{f}=(\mu-1)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)$

According to lens Maker's formula,when the lens in the air.

$\frac{1}{f}=\left( \frac{3}{2}-1\right)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)$

$\frac{1}{f}=\frac{1}{2x}$

$\Rightarrow$            $ f=2x$

    $\left(\frac{1}{x}=\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)$

In case of liquid , where  refractive index is  $\frac{4}{3}$ and   $\frac{5}{3}$, we get

focal length in first liquid 

$\frac{1}{f_{1}}=\left(\frac{\mu_{s}}{\mu_{l1}}-1\right)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)$

$\Rightarrow$          $\frac{1}{f_{1}}=\left(\frac{\frac{3}{2}}{\frac{4}{3}}-1\right)\frac{1}{x}$

$\Rightarrow$            f1  is positive

$\frac{1}{f_{1}}=\frac{1}{8x}=\frac{1}{4(2x)}=\frac{1}{4f}$

$\Rightarrow$             f1=4f

  focal length in second liquid

            $\frac{1}{f_{2}}=\left(\frac{\mu_{s}}{\mu_{l1}}-1\right)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)$

$\Rightarrow$          $\frac{1}{f_{2}}=\left(\frac{\frac{3}{2}}{\frac{5}{3}}-1\right)\frac{1}{x}$

$\Rightarrow$            f2 is negative