Answer:
Option D
Explanation:
$\triangle W_{1}+\triangle U_{1}=\triangle Q_{1}$ ...........(i)
$\triangle W_{2}+\triangle U_{2}=\triangle Q_{2}$
$\triangle Q_{1}+\triangle Q_{2}=0$
$\therefore$ $ (nC_{p}\triangle T)_{1}+(nC_{p}\triangle T)_{2}=0$
But n1 =n2=n
$\therefore $ $\frac{5}{2} R(T-700)+\frac{7}{2} R(T-400)=0$
Solving , we get T=525 k
Now, from equatins (i) and (ii) , we get
$\triangle W_{1}+\triangle W_{2}=-\triangle U_{1}- \triangle U_{2}$
as $\triangle Q_{1}+\triangle Q_{2}=0$
$\therefore$ $ \triangle W_{1}+\triangle W_{2}=-[(nC_{v}\triangle T)_{1}+(nC_{v}\triangle T)_{2}]$
= $-\left[2 \times\frac{3}{2}R\times (525-700)+2\times\frac{5}{2}R\times (525-400)\right]$
=-100 R