Answer:
Option A,C
Explanation:
L=3(\frac{h}{2\pi})

\therefore n=3 as L=3(\frac{h}{2\pi})
r_{n}\propto\frac{n^{2}}{z}
r3= 4.5 a0 \therefore z=2
\frac{1}{\lambda_{1}}=Rz^{2}\left(\frac{1}{2^{2}}-\frac{1}{3^{2}}\right)=4R\left(\frac{1}{4}-\frac{1}{9}\right)
\therefore \lambda_{1}=\frac{9}{5R}
\frac{1}{\lambda_{2}}=Rz^{2}\left(\frac{1}{1^{2}}-\frac{1}{3^{2}}\right)=4R\left(1-\frac{1}{9}\right)
\Rightarrow \lambda_{2}=\frac{9}{32R}
\frac{1}{\lambda_{3}}=Rz^{2}\left(\frac{1}{1^{2}}-\frac{1}{2^{2}}\right)=4R\left(1-\frac{1}{4}\right)
\Rightarrow \lambda_{3}=\frac{1}{3R}