Answer:
Option A
Explanation:
Given $\begin{vmatrix}x+\alpha & \beta & \gamma \\\gamma & x+\beta & \alpha \\\alpha & \beta& x+\gamma \end{vmatrix} =0$
Operate C1 → C1 + C2 + C3
$\begin{vmatrix}x+\alpha+\beta+\gamma & \beta & \gamma \\x+\alpha+\beta+\gamma & x+\beta & \alpha \\x+\alpha+\beta+\gamma & \beta& x+\gamma \end{vmatrix} =0$
$(x+\alpha+\beta+\gamma )\begin{vmatrix}1& \beta & \gamma \\1 & x+\beta & \alpha \\1 & \beta& x+\gamma \end{vmatrix} =0$
x = -($\alpha+\beta+\gamma$)
Again if
$\begin{vmatrix}1& \beta & \gamma \\1 & x+\beta & \alpha \\1 & \beta& \gamma \end{vmatrix} =0$→
$\begin{vmatrix}1& \beta & \gamma \\0 & x & \alpha-\gamma \\0 & 0& x \end{vmatrix}$=0
x2 = 0 → x = 0
.'. Solutions of the equation x = 0, -($\alpha+\beta+\gamma$)