Answer:
Option C
Explanation:
Let I=∫π/20√sinx√sinx+√cosxdx ...(1)
Then I=∫π/20√sin(π/2−x)√sin(π/2−x)+√cos(π/2−x)dx
I=∫π/20√cosx√cosx+√sinxdx...(2)
Adding (1) and (2) we get
2I = ∫π/20√sinx√cosx+√sinxdx + ∫π/20√cosx√sinx+√cosxdx
= ∫π/20√cosx+√sinx√cosx+√sinxdx
= ∫π/201.dx=[x](π/2)0 = π/2−0
I = π/4 = ∫π/20√sinx√sinx+√cosxdx = π/4