Answer:
Option B
Explanation:
Let y denote the number of bacteria at any instant t - then according to the question
$\frac{dy}{dt}\alpha y\Rightarrow \frac{dy}{y}=kdt$ .....(i)
k is the constant of proportionality , taken to be +ve integrating (i) , we get
log y=kt+c ....... (ii)
c is a parameter , let y0 be the initial number of bacteria
i.e, at t=0 using thus in (ii) , c = log y0
$\Rightarrow \log y=kt+\log y_{0}$
$\Rightarrow \log\frac{y}{y_{0}}=kt$ ....(iii)
$y= \left(y_{0}+\frac{10}{100}y_{0}\right)=\frac{11y_{0}}{10},$, when t=2
so , from (iii) , we get $\log \frac{\frac{11y_{0}}{10}}{y_{0}}=k(2)$
$\Rightarrow k=\frac{1}{2}\log \frac{11}{10}$ .........(iv)
Using (iv) in (iii) $\log\frac{y}{y_{0}}=\frac{1}{2}\left(\log \frac{11}{10}\right)t$ .....(v)
let the number of bacteria become 1,00,000 to 2,00,000 in t 1 hours .i.e, y=2y0 when t= t1 hours , from (v)
$\log\frac{2y_{0}}{y_{0}}=\frac{1}{2}\left(\log \frac{11}{10}\right)t_{1}\Rightarrow t_{1}=\frac{2\log 2}{\log \frac{11}{10}}$
Hence , the reqd. no of hours = $\frac{2\log 2}{\log \frac{11}{10}}$