1)

The value of   $\sin^{-1}\left(\frac{1}{\sqrt{5}}\right)+\cot^{-1}(3)$  is 


A) $\frac{\pi}{6}$

B) $\frac{\pi}{4}$

C) $\frac{\pi}{3}$

D) $\frac{\pi}{2}$

Answer:

Option B

Explanation:

Consider  

$\sin^{-1}\left(\frac{1}{\sqrt{5}}\right)+\cot^{-1}3$  ..........(i)

We have,   $\sin^{-1}\left(\frac{1}{\sqrt{5}}\right)=\cot^{-1}2$

 $\therefore$ From equation (i)  , we have 

 $\cos^{-1}2+\cot^{-1}3=\tan^{-1}\frac{1}{2}+\tan^{-1}\frac{1}{3}$

$\tan^{-1}\left(\frac{\frac{1}{2}+\frac{1}{3}}{1-\frac{1}{2}.\frac{1}{3}}\right)$

2152021582_m.JPG

           2

=  $\tan^{-1}\left(\frac{\frac{5/6}{6-1}}{6}\right)=\tan^{-1}1=\frac{\pi}{4}$