Answer:
Option B
Explanation:
we have,
$abcd=\cos(2\alpha+2\beta+2\gamma+2\delta)+i\sin (2\alpha+2\beta+2\gamma+2\delta)$
$\sqrt{abcd}=\cos(\alpha+\beta+\gamma+\delta)+i\sin(\alpha+\beta+\gamma+\delta)$ ..(i)
$\therefore$ $\frac{1}{\sqrt{abcd}}=\cos(\alpha+\beta+\gamma+\delta)-i\sin(\alpha+\beta+\gamma+\delta)$ ....(ii)
Adding (i) and (ii) , we obtain
$\sqrt{abcd}+\frac{1}{\sqrt{abcd}}=2\cos(\alpha+\beta+\gamma+\delta)$