Answer:
Option D
Explanation:
Given, a= $\cos \alpha +i \sin \alpha,b=\cos \beta+i \sin \beta$,
and $c=\cos \gamma+i \sin \gamma$
Now, $\frac{b}{c} =\frac{ \cos \beta+i \sin \beta}{\cos \gamma+i \sin \gamma} \times \frac{\cos \gamma-i \sin \gamma}{\cos \gamma-i \sin \gamma}$
$\Rightarrow$ $\frac{b}{c}= \cos (\beta-\gamma)+i \sin (\beta-\gamma)$ ....(i)
Similarly, $\frac{c}{a}= \cos (\gamma-\alpha)+i \sin (\gamma-\alpha)$......(ii)
and $\frac{a}{b}=\cos (\alpha-\beta)+i \sin (\alpha- \beta)$.....(iii)
On adding Eqs.(i), (ii) and (iii), we get
$\cos (\beta-\gamma)+\cos (\gamma-\alpha)+\cos (\alpha+\beta)+i$
$[(\sin (\beta-\gamma)+\sin(\gamma-\alpha)+ \sin (\alpha- \beta)]=1$
$[ \because \frac{b}{c}+\frac{c}{a}+\frac{a}{b}=1]$
On equating real parts , we get
$\cos (\beta-\gamma)+\cos (\gamma-\alpha)+\cos (\alpha- \beta)$=1