<<12345>>
11.

If $|z+4|  \leq 3$, then the greatest and the least value of |z+1|  are 


A) -1,6

B) 6,0

C) 6,3

D) none of these



12.

If a=  $\cos \alpha +i \sin \alpha,b=\cos \beta+i \sin \beta$, $c=\cos \gamma+i \sin \gamma$ and $\frac{b}{c}+\frac{c}{a}+\frac{a}{b}=1$ then $\cos (\beta-\gamma)+\cos (\gamma-\alpha)+\cos (\alpha- \beta)$  is equal to 


A) $\frac{3}{2}$

B) $-\frac{3}{2}$

C) 0

D) 1



13.

If the line lx+my-n=0 will be a normal to the hyperbola , then $\frac{a^{2}}{l}-\frac{b^{2}}{m^{2}}=\frac{(a^{2}+b^{2})^{2}}{k}$ , where k  is equal to 


A) n

B) $n^{2}$

C) $n^{3}$

D) none of these



14.

The minimum area of the triangle formed by any tangent to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ with the coordinate axes is  


A) $a^{2}+b^{2}$

B) $\frac{(a+b)^{2}}{2}$

C) ab

D) $\frac{(a-b)^{2}}{2}$



15.

The normals at three points P, Q and R of the parabola $y^{2}=4ax$ meet at (h,k). The centroid of the $\triangle PQR$ lies on 


A) x=0

B) y=0

C) x=-a

D) y=a



<<12345>>