Loading [MathJax]/jax/output/HTML-CSS/jax.js


1)

If the line lx+my-n=0 will be a normal to the hyperbola , then a2lb2m2=(a2+b2)2k , where k  is equal to 


A) n

B) n2

C) n3

D) none of these

Answer:

Option B

Explanation:

 The equation of any normal

to x2a2y2b2=1 is  axcosϕ+bycotϕ=a2+b2

    axcosϕ+bycotϕ(a2+b2)=0....(i)

The straight line lx+my-n=0 will be normal to the hyperbola 

 x2a2y2b2=1 , then eq.(i) and lx+my-n=0 represent  the same line, 

    acosϕl=bcotϕm=a2+b2n

  secϕ=nal(a2+b2)

  and tanϕ=nbm(a2+b2) 

n2a2l2(a2+b2)2n2b2m2(a2+b2)2=1

                                                   [sec2ϕtan2ϕ=1]

a2l2b2m2=(a2+b2)2n2

But given equation  of normal is 

a2l2b2m2=(a2+b2)2k

   k=n2