Answer:
Option B
Explanation:
The equation of any normal
to x2a2−y2b2=1 is axcosϕ+bycotϕ=a2+b2
⇒ axcosϕ+bycotϕ−(a2+b2)=0....(i)
The straight line lx+my-n=0 will be normal to the hyperbola
x2a2−y2b2=1 , then eq.(i) and lx+my-n=0 represent the same line,
∴ acosϕl=bcotϕm=a2+b2n
⇒ secϕ=nal(a2+b2)
and tanϕ=nbm(a2+b2)
n2a2l2(a2+b2)2−n2b2m2(a2+b2)2=1
[∵sec2ϕ−tan2ϕ=1]
a2l2−b2m2=(a2+b2)2n2
But given equation of normal is
a2l2−b2m2=(a2+b2)2k
∴ k=n2