Answer:
Option C
Explanation:
Equation of tangent at $(a \cos \theta,b \sin \theta)$ to the ellipse is
$\frac{x}{a} \cos \theta+\frac{y}{b} \sin \theta=1$
Coordinates of P and Q are
$\left(\frac{a}{\cos \theta},0\right)$ and $\left(0,\frac{b}{\sin \theta}\right)$, respectively
Area of $\triangle OPQ$=$\frac{1}{2}|\frac{a}{\cos \theta} \times \frac{b}{\sin \theta}|=\frac{ab}{|\sin 2 \theta|}$
$\therefore$ Minimum area =ab