Answer:
Option B
Explanation:
According to the given information,
$\frac{dy}{dx}=1 $ ..............(i)
$\because$ $\frac{dy}{d \theta}= a\sin \theta$ and $\frac{dx}{d \theta}= a(1+\cos \theta)$
$\therefore$ $\frac{dy}{dx}=\frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}}=\frac{a \sin\theta}{a(1+\cos \theta)}=1$
$\Rightarrow\frac{ \sin\theta}{1+\cos \theta}=1\Rightarrow\frac{2 \sin \frac{\theta}{2} \cos \frac{\theta}{2}}{2 \cos ^{2}\frac{\theta}{2}}=1\Rightarrow \tan \frac{\theta}{2}=1$
$\Rightarrow \frac{\theta}{2}=\frac{\pi}{4}\Rightarrow \theta = \frac{\pi}{2}$
So, the required point on the curve is $\left(a\left(\frac{\pi}{2}+1\right)a\right)$
hence , option (b) is correct