<<678910
46.

In a $\triangle$ ABC, if A=2B and the sides opposite to the angles A, B,C  are $\alpha+1, \alpha-1 $ and $\alpha $ respectively, then $\alpha$= 


A) 3

B) 4

C) 5

D) 6



47.

when  $\frac{\sin 9 \theta}{\cos 27 \theta}+\frac{\sin 3 \theta}{\cos 9 \theta}+\frac{\sin  \theta}{\cos 3 \theta}=k$

 $(\tan 27 \theta -\tan \theta)$  is defined , then k=


A) $\frac{\pi}{2}$

B) -$\frac{1}{2}$

C) $\frac{1}{2}$

D) $\frac{\pi}{4}$



48.

If the coefficient of $x^{5}$  in the expansion  of   $\left( ax^{2}+\frac{1}{bx}\right)^{13}$ is equal to the coefficient of $x^{-5}$  in the expansion of   $\left( ax^{}-\frac{1}{bx^{2}}\right)^{13}$ , then ab=


A) 1

B) $\frac{1}{6}$

C) $\frac{7}{6}$

D) $\frac{4}{2}$



49.

If all possible numbers are formed by using the digits 1,2,3,5,7 without repetition and they are arranged in descending order, then the rank of the number 327 is 


A) 72

B) 175

C) 149

D) 271



50.

If the roots  of the equation

$\sqrt{\frac{x}{1-x}}+\sqrt{\frac{1-x}{x}}=\frac{5}{2}$ are p and q (p>q)  and the roots of the equation

$(p+q)x^{4}-pqx^{2}+\frac{p}{q}=0$   are $\alpha,\beta , \gamma ,\delta$ then   

$(\sum \alpha)^{2}-\sum \alpha\beta+\alpha\beta\gamma\delta=0$


A) 0

B) $\frac{104}{25}$

C) $\frac{25}{4}$

D) $\frac{16}{4}$



<<678910