Loading [MathJax]/jax/output/HTML-CSS/jax.js


1)

If the coefficient of x5  in the expansion  of   (ax2+1bx)13 is equal to the coefficient of x5  in the expansion of   (ax1bx2)13 , then ab=


A) 1

B) 16

C) 76

D) 42

Answer:

Option A

Explanation:

 The general  term in the expansion of   (ax2+1bx)13

   T(p+1)=13Cp(ax2)13p1(bx)p

    = 13Cpa13pbpx263p

  For, x5, p=7

 So, coefficient of x5 in the expansion of

   (ax2+1bx)13   is   13C7a6b7     [  p=7]

 Similarly, the general term in the expansion of   (ax1bx2)13

     Tq+1=13Cq(ax)13q(1bx2)q

    =13Cq(1)qa13qbqx13q

  for x5,q=6

 So, coefficient  of x5  in the expansion of   (ax1bx2)13  is 

13C6a7b6

 According to the question,

13C7a6b7=13C6a7b6

   ab=1