Answer:
Option B
Explanation:
Let √x1−x=y
So, y+1y=52
⇒ 2y2−5y+2=0
⇒ y=2,12
So, x=45,15
∵ p>q
∴ p=45,q=15
Now, for the equation (p+q)x4−pqx2+pq=0
∑α=0,∑αβ=−pqp+q and αβγδ=pq(p+q)
So, (∑α)2−∑αβ+αβγδ=0+pqp+q+pq(p+q)
= p(p+q)(q+1q)
= 4545+15(15+5)=45×265=10425