Answer:
Option B
Explanation:
Let $\sqrt{\frac{x}{1-x}}=y$
So, $y+\frac{1}{y}=\frac{5}{2}$
$\Rightarrow$ $2y^{2}-5y+2=0$
$\Rightarrow$ $y=2, \frac{1}{2}$
So, $x= \frac{4}{5}, \frac{1}{5}$
$\because$ p>q
$\therefore$ $p=\frac{4}{5}, q=\frac{1}{5}$
Now, for the equation $(p+q)x^{4}-pqx^{2}+\frac{p}{q}=0$
$\sum \alpha=0,\sum\alpha\beta=-\frac{pq}{p+q} $ and $ \alpha\beta\gamma\delta=\frac{p}{q(p+q)}$
So, $(\sum \alpha)^{2}-\sum \alpha\beta+\alpha\beta\gamma\delta=0+\frac{pq}{p+q}+\frac{p}{q(p+q)}$
= $\frac{p}{(p+q)}\left(q+\frac{1}{q}\right)$
= $\frac{\frac{4}{5}}{\frac{4}{5}+\frac{1}{5}}\left(\frac{1}{5}+5\right)=\frac{4}{5}\times\frac{26}{5}=\frac{104}{25}$