Answer:
Option C
Explanation:
According to sine law,
$\frac{ \sin A}{ \alpha +1}= \frac{ \sin B}{\alpha-1}$
$\Rightarrow$ $\frac{2 \sin B \cos B}{\alpha+1}=\frac{\sin B}{\alpha-1}$ [$\because$ A=2B]
$\Rightarrow$ $ \cos B=\frac{\alpha+1}{2(\alpha-1)}$
$\Rightarrow$ $\frac{(\alpha+1)^{2}+\alpha^{2}-(\alpha-1)^{2}}{2\alpha(\alpha+1)}=\frac{\alpha+1}{2(\alpha-1)}$
$\Rightarrow$ $\frac{4\alpha+\alpha^{2}}{2\alpha(\alpha+1)}=\frac{\alpha+1}{2(\alpha-1)}$
$\Rightarrow$ $(4+\alpha)(\alpha-1)=(\alpha+1)^{2}$
$\Rightarrow$ $\alpha^{2}+3\alpha-4=\alpha^{2}+2\alpha+1$
$\Rightarrow$ $\alpha$=5