Answer:
Option A
Explanation:
Given,
$F_{1}=\hat{i}+2\hat{j}+3\hat{k}$ N
$F_{2}=4\hat{i}-5\hat{j}-2\hat{k}$ N
$r_{1}=20\hat{i}+15\hat{j}$ cm
$r_{2}=7\hat{k}$ cm
Total force on particle , $F= F_{1}+F_{2}$
=$\hat{i}+2\hat{j}+3\hat{k}+4\hat{i}-5\hat{j}-2\hat{k}$
= $(5 \hat{i}-3\hat{j}+\hat{k})N$
Displacement of pratice , $s=r_{2}-r_{1}$
= $7 \hat{k}-20\hat{i}-15\hat{j}$
=$(-20 \hat{i}-15 \hat{j}+7\hat{k})$cm
We know that,
Work (w)=F.s
= $(5\hat{i}-3\hat{j}+\hat{k})(-20 \hat{i}-15 \hat{j}+7\hat{k}) \times 10^{-2}$
=$(-100+45+7) \times 10^{-2}$
=-0.48 J