Answer:
Option D
Explanation:
Deceleration $\omega=-a\sqrt{v}$
But $\omega=\frac{dv}{dt}\Rightarrow\frac{dv}{dt}=-a\sqrt{v}$
$\frac{-dv}{\sqrt{v}}=a.dt\Rightarrow\int_{v_{i}}^{0} \frac{dv}{\sqrt{v}}=\int adt$
$|2\sqrt{v}|_{v_{i}}^{0}=at\Rightarrow t=\frac{a}{2}\sqrt{v_{i}s}$
Again,
$\frac{-dv}{dt}=a\sqrt{v}\Rightarrow\frac{dv}{dx}.\frac{dx}{dt}=-a\sqrt{v}$
$\frac{dv}{dx}.v=-a\sqrt{v}\Rightarrow dv \sqrt{v}=-a.dx$
$\int_{v_{0}}^{0} \sqrt{v}dv=-a\int_{0}^{s} ds$
After solving , we get
$s=\frac{2}{3a}.v_{0}^{3/2}$