Answer:
Option A
Explanation:
Resistance of wire is given by R= $\rho\frac{l}{A}$
where, l is the length of conductor and A is the cross-sectional area.According to the question,
$R_{1}=\rho\frac{l_{1}}{A_{1}}$ ............(i)
in the second condition,
$R_{2}=\rho\frac{l_{2}}{A_{2}}$ ............(ii)
On dividing Eq.(i) by Eq.(ii) , we get
$\frac{R_{1}}{R_{2}}=\frac{l_{1}}{A_{1}}\times\frac{A_{2}}{l_{2}}$
$\frac{R_{1}}{R_{2}}=\frac{A_{2}}{A_{1}}\times\frac{l_{1}}{l_{2}}$
$\frac{R_{1}}{R_{2}}=\frac{\pi(\frac{d_{2}}{2})^{2}}{\pi(\frac{d_{1}}{2})^{2}}\times\frac{l_{1}}{l_{2}}$
$\frac{R_{1}}{R_{2}}=\frac{({d_{2}})^{2}}{({d_{1}})^{2}}\times\frac{l_{1}}{l_{2}}$............(iii)
Volume of wire remains constant, Hence , V1 = V2
A1l1 = A2l2
$\Rightarrow$ $ \pi \left(\frac{d_{1}}{2}\right)^{2}l_{1}=\pi \left(\frac{d_{2}}{2}\right)^{2}l_{2}$
$\Rightarrow$ $ \frac{\pi d_{1}}{4}^{2}l_{1}=\frac{\pi d_{2}}{4}^{2}l_{2}$
$\frac{l_{1}}{l_{2}}=\frac{(d_{2})^{2}}{(d_{1})^{2}}$ ...............(iv)
Substituting the value of Eq.(iv) in Eq.(iii) , we get
$\frac{R_{1}}{R_{2}}=\frac{(d_{2})^{2}}{(d_{1})^{2}}\times\frac{(d_{2})^{2}}{(d_{1})^{2}}$
$\frac{R_{1}}{R_{2}}=\frac{(d_{2})^{4}}{(d_{1})^{4}}$