Answer:
Option B
Explanation:
Let magnetic field at P1 is B1 and at P2 is B2
$\therefore$ $\frac{B_{1}}{B_{2}}=\frac{\frac{x_{1}}{(x_{1}^{2}-l^{2})^{2}}}{\frac{x_{2}}{(x_{2}^{2}-l^{2})^{2}}}=\frac{(x_{2}^{2}-l^{2})^{2}}{(x_{1}^{2}-l^{2})^{2}}\times\frac{x_{1}}{x_{2}}$
$\Rightarrow$ $\frac{25}{2}=\frac{10}{20}\left[\frac{x_{2}^{2}-l^{2}}{x_{1}^{2}-l^{2}}\right]^{2}$
or $\left[\frac{x_{2}^{2}-l^{2}}{x_{1}^{2}-l^{2}}\right]=5$
or $x_{2}^{2}-l^{2}=5x_{1}^{2}-5l^{2}$
or $ 4l^{2}=5x_{1}^{2}-5x_{2}^{2}$
= 5 x (10)2-(20)2
= 500-400=100
$\Rightarrow$ $ l^{2}=25$
$\Rightarrow$ l=5 cm
$\therefore$ 2l=10 cm