Answer:
Option C
Explanation:
Given vector r with direction cosines l,m,n is equally inclined to the coordinate axes,
$\therefore$ l=m=n ........(i)
$\because$ l2+m2+n2=1
l2+l2+l2=1 [from E.q,(i)]
$\Rightarrow$ 3l2 =l$\rightarrow$ l2=$\frac{1}{3}$
$\Rightarrow$ $l=\pm\frac{1}{\sqrt{3}}$
$\therefore$ l=m=n= $\pm\frac{1}{\sqrt{3}}$
Now vector = $r=|r|\left(\pm \frac{1}{\sqrt{3}}\hat{i}+\frac{1}{\sqrt{3}}\hat{j}\pm\frac{1}{\sqrt{3}}\hat{k}\right)$
Since, each has 2 choices i.e, l=m=n= $\frac{1}{\sqrt{3}}$
$\therefore$ Total number of such vectors =23=8