Answer:
Option C
Explanation:
Given vector r with direction cosines l,m,n is equally inclined to the coordinate axes,
∴ l=m=n ........(i)
∵ l2+m2+n2=1
l2+l2+l2=1 [from E.q,(i)]
⇒ 3l2 =l→ l2=13
⇒ l=±1√3
∴ l=m=n= ±1√3
Now vector = r=|r|(±1√3ˆi+1√3ˆj±1√3ˆk)
Since, each has 2 choices i.e, l=m=n= 1√3
∴ Total number of such vectors =23=8