Answer:
Option A
Explanation:
Given α and β be the roots of the equation
x2 +5|x|-6=0,
Now |x|2 +5|x|-6=0
|x|2+6|x|-|x|-6=0
[by factorisation]
|x|(|x|+6)-1(|x|+6)=0
(|x|+6)(|x|-1)=0
|x|=-6 or |x|=1
(since, modulus cannot be giving negative values)
∴ |x|=1⇒x=±1
So, α =1 and β =-1 ∴ Now, |tan−1α−tan−1β|=|tan−11−tan−1−1|
= |π4−(−π4)|=|π4+π4|=|π2|