Loading [MathJax]/jax/output/HTML-CSS/jax.js


1)

If α and β are roots of the equation x2 +5|x|-6=0, then the value of |tan1αtan1β|= is 


A) π2

B) 0

C) π

D) π4

Answer:

Option A

Explanation:

Given α and β  be the roots of the equation

 x2 +5|x|-6=0,

 Now   |x|2 +5|x|-6=0

 |x|2+6|x|-|x|-6=0

                    [by factorisation]

|x|(|x|+6)-1(|x|+6)=0

(|x|+6)(|x|-1)=0

|x|=-6 or |x|=1

(since, modulus cannot be giving negative values)

   |x|=1x=±1

So,   α =1 and β  =-1     Now, |tan1αtan1β|=|tan11tan11|

= |π4(π4)|=|π4+π4|=|π2|