<<12345>>
16.

$\frac{tan^{-1})(\sqrt{3})-\sec^{-1}(-2)}{cosec^{-1}(-\sqrt{2})+\cos^{-1}(-\frac{1}{2})}$ is equal to


A) $\frac{4}{5}$

B) -$\frac{4}{5}$

C) $\frac{3}{5}$

D) 0



17.

$\int\left(\frac{4e^{x}-25}{2e^{x}-5}\right)dx= Ax+B\log(2e^{x}-5)+c$, then


A) A=5 and B=3

B) A=5 and B=-3

C) A=-5 and B=3

D) A=-5 and B=-3



18.

If the function f(x) defined by

$f(x)=\begin{cases}x \sin\frac{1}{x} ,&for  x \neq 0\\k, & for x=0 \end{cases}$

 is continuous at x=0 , then k is equal to


A) 0

B) 1

C) -1

D) $\frac{1}{2}$



19.

The point of the curve  $6y= x^{3}+2$  at which  y-coordinate is changing 8 times as fact  as x-coordinate is 


A) (4,11)

B) (4,-11)

C) (-4,11)

D) (-4,-11)



20.

 The joint equation of bisectors of angles between lines x=5 and y=3 is


A) (x-5)(y-3)=0

B) $x^{2}-y^{2}-10x+6y+16=0$

C) xy=0

D) xy-5x-3y+15=0



<<12345>>