Answer:
Option B
Explanation:
Let l=$\int\left(\frac{4e^{x}-25}{2e^{x}-5}\right)dx$
= $\int\frac{4e^{x}}{2e^{x}-5}dx-\int\frac{25}{2e^{x}-5}dx$
$=4\int\frac{e^{x}}{2e^{x}-5}dx-25\int\frac{e^{-x}}{2-5e^{-x}}dx$
Put $2e^{x}-5=u$ and 2-5$e^{-x}$=v
$\Rightarrow$ $ 2e^{x} dx$=du and 5$e^{-x}dx= du$
$\Rightarrow e^{x}dx=\frac{du}{2} $ and $ e^{-x}dx=\frac{dv}{5}$
$\therefore$ $l=4\int_{}^{} \frac{du}{2u}-25\int\frac{du}{5v}$
= 2 log u-5 log v+c
$=2\log(2e^{x}-5)-5\log(2-5e^{x})+c$
$=2\log(2e^{x}-5)-5\log\left(\frac{2e^{x}-5}{e^{x}}\right)+c$
$=2\log(2e^{x}-5)-5\log(2e^{x}-5)+5\log e^{x}+c$
$=-3\log(2e^{x}-5)+5x+c$
$\Rightarrow l=5x-3\log(2e^{x}-5)+c$
But it is given l=Ax+Blog (2ex -5)+c
$\therefore$ A=5 and B=-3