Answer:
Option A
Explanation:
Given , 6y=x3+2...........(i)
and △y=8△x
On differentiating both sides of Eq.(i) w.r.t x. we get
6dydx=3x2⇒dydx=12x2
∵ △y=dydx△x⇒8△x=12x2△x
⇒ x2=16⇒x=±4
When x=4 , 6y=(4)3+2
⇒ 6y=66 ⇒ y=11
Hence , required point is (4,11)