Answer:
Option A
Explanation:
Coordinate of points A and B are (6,-4,4) and (0,0,-4) and coordinate of points C and D are (-1,-2,-3) and (1,2,-5)
Now , equation of line passing through (0,0,-4) and (6,-4,4) is
$\frac{x-0}{6}=\frac{y-0}{-4}=\frac{z+4}{4+4}$=k [say]
$\Rightarrow$ x=6k, y=-4k
and z=8k-4 ........(i)
Again , equation of line passing through (-1,-2,-3) and (1,2,-5) is
$\frac{x+1}{1+1}=\frac{y+2}{2+2}=\frac{z+3}{-5+3}$
$\Rightarrow$ $\frac{x+1}{2}=\frac{y+2}{4}=\frac{3+3}{-2}$ ........(ii)
Since, two lines are intersect , therefore point (6k,-4k,8k-4) satisfy Eq.(ii) , we get
$\frac{6k+1}{2}=\frac{-4k+2}{4}= \frac{8k-4+3}{-2}$
$\Rightarrow$ 6k+1=-2k+1=-(8k-1)
$\therefore$ 6k+1=-2k+1
$\Rightarrow$ 8k=0
$\Rightarrow$ k=0
$\therefore$ x=6 x 0, y=-4 x0
and z=8 x0-4
$\Rightarrow$ x=0 , y=0 and z=-4
Which is equal to the B coordinate