1)

 The joint equation of bisectors of angles between lines x=5 and y=3 is


A) (x-5)(y-3)=0

B) $x^{2}-y^{2}-10x+6y+16=0$

C) xy=0

D) xy-5x-3y+15=0

Answer:

Option B

Explanation:

The equation of the  bisector of the angle between the lines

 (x-5) and (y-3) is

$\frac{(x-5)}{\sqrt{1^{2}}}=\pm\frac{y-3}{\sqrt{1^{2}}}\Rightarrow\frac{x-5}{1}=\pm\frac{y-3}{1}$

$\Rightarrow$     x-5=+(y-3) and x-5 =-(y-3)

$\Rightarrow$  (x-y-2)=0 and (x+y-8)=0

 $\therefore$  combined equation  of bisector of angle between the lines is

            (x-y-2)(x+y-8)=0

$\Rightarrow x^{2}+xy-8x-xy-y^{2}+8y-2x-2y-16=0$

$\Rightarrow x^{2}-y^{2}-10x+6y+16=0$