Answer:
Option B
Explanation:
$g(x)=\int_{x}^{\frac{\pi}{2}} f'(t) cosec$ $ t f(t)-\cot $ $ t cosec$ $ t f(t)] dt$
$g(x)= f(\frac{\pi}{2}) cosec $ $\frac{\pi}{2}-f(x) cosec$ $ x$
$\Rightarrow$ $g(x)=3-\frac{f(x)}{\sin x}$
$\lim_{x \rightarrow 0}g(x)=\lim_{x \rightarrow 0}(\frac{3\sin x-f(x)}{\sin x})$
$=\lim_{x \rightarrow 0}\frac{3\cos x-f'(x)}{\cos x}$
$\frac{3-1}{1}=2$