Answer:
Option A,B,C
Explanation:
Fringe width $\beta= \frac{\lambda D}{d}$ or $ \beta\propto\lambda $
$\therefore$ $ \lambda_{2}$ > $ \lambda_{1}$
So $\beta_{2}$ > $\beta_{1}$
Number of fringes ina given width
$m=\frac{y}{\beta}$ or $m\propto\frac{1}{\beta}$
$\Rightarrow$ $ m_{2}$ < $m_{1}$ as $\beta_{2}$ > $\beta_{1}$
Distance of 3 rd maximum of $\lambda_{2}$ from central maximum
$=\frac{3\lambda_{2}D}{d}=\frac{1800D}{d}$
Distance of 5 th minimum of $\lambda_{1}$ from central maximum
$=\frac{9\lambda_{1}D}{2d}=\frac{1800D}{d}$
So, 3rd maximum of $\lambda_{2}$ will overlap with 5th minimum of $\lambda_{1}$
Angular seperation (or angular fringe width)
$=\frac{\lambda}{d}\propto \lambda$
$\Rightarrow $ aangular separation for $\lambda_{1}$ will be lesser.