Answer:
Option C,D
Explanation:
$\frac{dQ}{dt}=I\Rightarrow Q=\int_{}^{} I dt=\int_{}^{} (I_{0}\cos \omega t)dt$
$\therefore $ $ Q_{max}=\frac{I_{0}}{\omega}=\frac{1}{500}=2 \times 10^{-3}C$
Justrt after switching
In steady state,
At $t=\frac{7\pi}{6\omega}$ or $\omega t=\frac{7\pi}{6} $
Current comes out to be negative from the given expression. So , current is anti-clockwise.
Charge supplied by source from t=0 to t = $\frac{7\pi}{6\omega}$
$Q=\int_{0}^{\frac{7\pi}{6\omega}} \cos (500t) dt$
$=\left[\frac{\sin 500t}{500}\right]^{\frac{7\pi}{6\omega}}_{0}=\frac{\sin \frac{7\pi}{6}}{500}=-1mC$
Apply Kirchhoff's loop law just after changing the switch to position D
$ 50+\frac{Q_{1}}{C}-IR=0$
substituting the values of Q1 , C and R we get,
I= 10A
In steady state Q2= CV=1mC
$\therefore$ Net charge flown from battery= 2mC