Answer:
Option C
Explanation:
$W_{ibf}=W_{ib}+W_{bf}$
=50J +100J=150J
$W_{iaf}=W_{ia}+W_{af}$
=0+200 J= 200J
Qiaf= 500J
So, $\triangle U_{iaf}=Q_{iaf}-W_{iaf}$
=500 J-200J=300J
=Uf-Ui
So, $U_{f}=U_{iaf}+U_{i}$
=300 J+100J
=400J
$\triangle U_{ib}=U_{b}-U_{i}$
=200J-100J
=100 J
$Q_{ib}=\triangle U_{ib}+W_{ib}$
=100J +50J=150J
$Q_{ibf}=\triangle U_{ibf}+W_{ibf}$
$=\triangle U_{iaf}+W_{ibf}$
=300J+150J
=450 J
So, the required ratio,
$\frac{Q_{bf}}{Q_{ib}}=\frac{Q_{ibf}-Q_{ib}}{Q_{ib}}$
= $\frac{450-150}{150}=2$