Answer:
Option B
Explanation:
Equation of circle can be rewritten as
$x^{2}+y^{2}=\frac{5}{2}$,
Centre → (0,) and radius $\rightarrow\sqrt{\frac{5}{2}}$
Let common tangent be
$y=mx+\frac{\sqrt{5}}{m}$
$\Rightarrow m^{2}x-my+\sqrt{5}=0$
The perependicular from centre to the tangent is equal to radius of the cirtcle
$\therefore$ $\frac{\frac{\sqrt{5}}{m}}{\sqrt{1+m^{2}}}=\sqrt{\frac{5}{2}}$
$\Rightarrow $ $ m\sqrt{1+m^{2}}=\sqrt{2}$
$\Rightarrow$ $ m^{2}(1+m^{2})=2$
$\Rightarrow $ $ m^{4}+m^{2}-2=0$
$\Rightarrow $ $ (m^{2}+2)(m^{2}-1)=0$
$\Rightarrow $ $ m\pm1$
($\because m^{2}+2\neq0,$ as $m\in R)$
$\therefore$ $y=\pm(x+\sqrt{5})$ both statements are correct as m=$\pm$ 1 satisfies the given equation of statement II.