Answer:
Option B
Explanation:
PLAN $KE=\frac{1}{2}mv^{2}=\frac{3}{2}RT$
$\therefore$ $m^{2}v^{2}=2mKE$
$\therefore$ mv= $\sqrt{2mKE}$
$\lambda$ (wavelength)=
$\frac{h}{mv}=-\frac{h}{\sqrt{2mKE}}=\frac{h}{\sqrt{2m(T)}}$
$\lambda$(He at -73° C=200K)= $\frac{h}{\sqrt{2\times 4\times200}}$
$\lambda$ (Ne at 727° C=1000k)
= $\frac{h}{\sqrt{2\times 20\times1000}}$
$\therefore$ $\frac{\lambda_{(He)}}{\lambda_{(Ne)}}=\sqrt{\frac{2\times20\times1000}{2\times4\times200}}=5$
Thus, M=5