Answer:
Option A
Explanation:
Take the circular tube as a long solenoid. The wires are closely wound.
Magnetic field inside the solenoid is
$B= \mu_{0} ni$
Here, n= number of turns per unit length
$\therefore$ ni= current per unit length$
In the given problem,
$ni= \frac{I}{L}$
$\therefore$ $B= \frac{\mu_{0} I}{L}$
Flux passing through the circular coil is
$\phi =BS=\left(\frac{\mu_{0}l}{L}\right)(\pi r^{2})$
Induced emf, $e= -\frac{d \phi}{dt}=-\left(\frac{\mu_{0} \pi r^{2}}{LR}\right). \frac{dl}{dt}$
magnetic moment $iA=i \pi r^{2}$
or $M=-\left(\frac{\mu_{0} \pi^{2} r^{4}}{LR}\right). \frac{dl}{dt}$....(i)
Given, $l=l_{0} \cos 300 t$
$\therefore$ $\frac{dl}{dt}=-300 l_{0} \sin (300 t)$
Substituting in Eq.(i), we get
$M=\left(\frac{300 \pi^{2} r^{4}}{LR}\right).\mu_{0}l_{0} \sin 300t$
$\therefore$ $N= \frac{ 300 \pi^{2} r^{4}}{LR}$
Substituting the values , we get
$N= \frac{300(22/7)^{2}(0.1)^{4}}{(10)(0.005)}$=5.926
or N=6