Answer:
Option B
Explanation:
$F_{1}=mg \sin \theta+\mu mg \cos \theta$
$F_{2}= mg \sin \theta-\mu mg \cos \theta$
Given that , $F_{1}=3F_{2}$
or $(\sin 45^{0}+\mu \cos 45^{0})$
=$3(\sin 45^{0}-\mu \cos 45^{0})$
On solving we get , $\mu=0.5$
$\therefore$ N= $10 \mu =5$
$\therefore$ Answer is 5