Answer:
Option C
Explanation:
$F_{1}=$ Net electrostatic force on anyone charge due to rest of three charges
=$\frac{1}{4 \pi \epsilon_{0}}\frac{q^{2}}{a^{2}}(\sqrt{2}+\frac{1}{2})$
$F_{2}$= surface tension force =$\gamma a$
If we see the equilibrium of line BC,
then $2F_{1} \cos 45^{0}=F_{2}$
or $ \sqrt{2} F_{1}=F_{2}$
or $\frac{1}{4 \pi \epsilon_{0}}\frac{q^{2}}{a^{2}}(2+\frac{1}{\sqrt{2}})=\gamma a$
$\therefore$ $a^{3}= \frac{1}{4 \pi \epsilon_{0}}(2+\frac{1}{\sqrt{2}})\frac{q^{2}}{\gamma} $
or $a= [\frac{1}{4 \pi \epsilon_{0}}(2+\frac{1}{\sqrt{2}})]^\frac{1}{3}[\frac{q^{2}}{\gamma}]^\frac{1}{3}$
$=k\left[\frac{q^{2}}{\gamma}\right]^{1/3}$
where , $k=\left\{\frac{1}{4 \pi \epsilon_{0}}(2+\frac{1}{\sqrt{2}})\right\}^{1/3}$
Therefore ,N=3
Answer is 3