Answer:
Option C
Explanation:
Given , m=64g g= 64 x 10-3 kg
kA =4 N/m and kB=16 N/m
The time period of oscillation of a spring
$T=2\pi\sqrt{\frac{m}{k}}$
$\Rightarrow T_{A}=T_{1}=2\pi\sqrt{\frac{m}{k_{A}}}=2\pi\sqrt{\frac{64\times 10^{-3}}{4}}$
=$2\pi\sqrt{16\times 10^{-3}}$ ...........(i)
and
and $T_{B}=T_{2}=2\pi\sqrt{\frac{m}{k_{B}}}=2\pi\sqrt{\frac{64\times 10^{-3}}{16}}$
$=2\pi\sqrt{4\times 10^{-3}}$..........(ii)
Dividing Eq.(i) by Eq.(ii) , we get
$\frac{T_{1}}{T_{2}}=\sqrt{\frac{16\times 10^{-3} }{4\times 10^{-3}}}=2$
$\Rightarrow $ $T_{1}=2T_{2}$
$\therefore$ $\frac{T_{1}+T_{2}}{T_{1}-T_{2}}=\frac{2T_{2}+T_{2}}{2T_{2}-T_{2}}=\frac{3T_{2}}{T_{2}}=\frac{3}{1}or 3:1$