1)

Probability of guessing correctly atleast 7 out of 10 answers  in a 'True' or 'False' test is equal to 


A) $\frac{11}{64}$

B) $\frac{11}{32}$

C) $\frac{11}{16}$

D) $\frac{27}{32}$

Answer:

Option A

Explanation:

In each  true and false question , probability of guessing  correctly  is p= $\frac{1}{2}$ and probability  of not guessing correctly , q= $\frac{1}{2}$

 Here, n=0

 $\therefore$   ,The probability of guessing atleast 7 correctly = P $(X\geq7)$

 =P(X=7)+P(X=8)+P(X=9)+P(X=10)

= $^{10}C_{7}\left( \frac{1}{2}\right)^{7}\left(\frac{1}{2}\right)^{3}+^{10}C_{8}\left( \frac{1}{2}\right)^{8}\left(\frac{1}{2}\right)^{2}+^{10}C_{9}\left( \frac{1}{2}\right)^{9}\left(\frac{1}{2}\right)^{1}+^{10}C_{10}\left( \frac{1}{2}\right)^{10}$

         $[\because P(x=r)=^{n}C_{r}p^{r}q^{n-r}]$

=   $120\times(\frac{1}{2})^{10}+45\left(\frac{1}{2}\right)^{10}+10\left( \frac{1}{2}\right)^{10}+1\left( \frac{1}{2}\right)^{10}$

 =$\frac{120+45+10+1}{2^{10}}=\frac{176}{1024}=\frac{11}{64}$