<<456789>>
31.

A bag contains 4 red and 6 black balls, a ball is drawn at random from the bag. Its colour is observed and this ball along with two additional balls of the same colour are returned to the bag. If now a ball is drawn at random from the bag, then the probability that this drawn ball is red, is


A) $\frac{3}{10}$

B) $\frac{2}{5}$

C) $\frac{1}{5}$

D) $\frac{3}{4}$



32.

The value  of $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\sin ^{2}x}{1+2^{x}}$ is


A) $\frac{\pi}{8}$

B) $\frac{\pi}{2}$

C) $\frac{\pi}{4}$

D) $4\pi$



33.

Two sets A and B are as  under A= { (a,b)} $\in$ RxR: $\mid a-5\mid<1$ and $\mid b-5\mid<1$;  B={(a,b) $\in$ RxR:

 $4(a-6)^{2}+9(b-5)^{2}\leq 36$ } , Then



A) $B\subset A$

B) $A\subset B$

C) $A\cap B =\phi $ (an empty set)

D) neither $A\subset B $ nor $B\subset A $



34.

If the system of linear equation x+ky+3z=0;3x+ky-2z=0; 2x+4y-3z=0  has a non-zero solution ( x,y,z), then $\frac{xz}{y^{2}}$ is equal to


A) -10

B) 10

C) -30

D) 30



35.

Let $g(x)=\cos x ^{2}, f(x)=\sqrt{x}$ and $\alpha ,\beta (\alpha <\beta)$ be the roots of the quadratic equation  

$18x^{2}-9\pi x +\pi^{2}=0$ .Then , the area (in sq units) bounded by the curve  $y= (gof) (x)$ and the lines x=α, x=β

 and y=0, is 


A) $\frac{1}{2}(\sqrt{3}-1)$

B) $\frac{1}{2}(\sqrt{3}+1)$

C) $\frac{1}{2}(\sqrt{3}-\sqrt{2})$

D) $\frac{1}{2}(\sqrt{2}-1)$



<<456789>>