Answer:
Option A
Explanation:
We have
$\Rightarrow$ $18x^{2}-9\pi x +\pi^{2}=0$
$\Rightarrow$ $18x^{2}-6\pi x-3\pi x +\pi^{2}=0$
$(6x-\pi) (3x-\pi)=0$
$\Rightarrow$ $x=\frac{\pi}{6},\frac{\pi}{3}$
Now , $\alpha<\beta =\frac{\pi}{6},\beta=\frac{\pi}{3}$
Given $g(x)=\cos x^{2} $ and $f(x)=\sqrt{x} $
$y=g Of(x) $
$\therefore$ $y=g (f(x) )=\cos x$
Area of region bounded by x=α,
x=β , y=0 and curve $y=g (f(x) )$ is
$A=\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \cos x dx$
$A=[\sin x]_\frac{\pi}{6}^\frac{\pi}{3}$
$A=\sin \frac{\pi}{3}-\sin \frac{\pi}{6}=\frac{\sqrt{3}}{2}-\frac{1}{2}$
$A=(\frac{\sqrt{3}-1}{2})$