Answer:
Option A
Explanation:
$T_{0}=2\pi\sqrt{\frac{L}{g}}$
$T^{'}=T_{0}+\triangle T=2\pi\sqrt{\frac{L+\triangle L}{g}}$
$T^{'}=T_{0}+\triangle T=2\pi\sqrt{\frac{L(1+\propto\triangle\theta) }{g}}$
$= \left\{2\pi \sqrt{\frac{L}{g}}\right\} (1+\alpha \triangle \theta)^{\frac{1}{2}}=T_{0}(1+\frac{\alpha\triangle\theta}{2})$
$\therefore$ $\triangle T=T'-T_{0}=\frac{\alpha\triangle \theta T_{0}}{2}$
$ \frac{\triangle T_{1}}{\triangle T_{2}}=\frac{\alpha \triangle \theta_{1}T_{0}}{\alpha \triangle \theta_{2}T_{0}}$
$\Rightarrow$ $\frac{12}{4}=\frac{40^{0}-\theta}{\theta-20^{0}}$
$\Rightarrow$ $3(\theta -20^{0})=40^{0}-\theta$
$\Rightarrow$ $4\theta=100^{0}$
$\Rightarrow$ $\theta=25^{0}C$
Time gained or lost given by
$\triangle T= (\frac{\triangle T}{T_{0}+\triangle T})t=\frac{\triangle t}{T_{0}}t$
From Eq.(i0.
$\frac{\triangle T}{T_{0}}=\frac{\alpha \triangle \theta}{2}$
$\triangle t= \frac{\alpha (\triangle \theta)t}{2}$
$12= \frac{\alpha(40^{0}-25^{0})(24\times 3600)}{2}$
$\alpha =1.85\times 10^{-5}/^{0}C$