Answer:
Option A
Explanation:
Let sum Rs. $x$. Then, $SI$ = Rs. $(3x-x)$ = Rs. $2x$, $T$ = ?
I gives : When $T=4$, then $SI$ = Rs. $\frac{x}{2}$.
$\therefore R$ $=\frac{100\times SI}{P\times T}$
$=\left(100\times\frac{x}{2}\times\frac{1}{x}\times\frac{1}{4}\right)$
$=12\frac{1}{2}\%$ p.a.
Now, Sum = Rs. $x$, $SI$ = Rs. $2x$, $R=\frac{25}{2}\%$ p.a., $T$ = ?
$\therefore T$ $=\frac{100\times SI}{P\times R}$ $=\left(\frac{100\times 2x}{x\times 25}\times 2\right)$ $=16$ years.
Thus, I only gives the answer.
II gives, $R$ $=\frac{25}{2}\%$ p.a
$\therefore T$ $=\frac{100\times SI}{P\times R}$ $=\left(\frac{100\times 2x}{x\times 25}\times 2\right)$ $=16$ years.
Thus, II only also gives the answer.
III gives, $R=5\%$ p.a.
$\therefore T$ $=\frac{100\times SI}{P\times R}$ $=\left(\frac{100\times 2x}{x\times 5}\right)$ $=40$ years.
Thus, III only also gives the answer.
$\therefore$ Correct answer is (A).